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We consider the assessment of a manufacturing process's performance when a sample of parts produced by
the process is measured with error. When the measurement error variance depends on the true characteristic of
the part being measured, nonstandard variance components models are needed. We consider a Bayesian
approach, showing how this methodology can be used to calculate tolerance intervals for the part distribution
to assess the manufacturing process's performance and to determine other important quantities such as release
specifications. In addition, we show how to handle censored data.

KEY WORDS: Bayesian Analysis; Consumer's Risk; Producer's Risk; Relative Standard Deviation; Tolerance

Interval; Variance Components.

Introduction

i data in Table 1 come from a new manufactur-
T ing process. Fach row represents two measure-
ments of the iron concentration in parts per million
(ppm), determined by emission spectroscopy, of the
game part. A part is considered to be acceptable if it
has under 225 ppm of iron. The engineers involved in
the process are interested in understanding produc-
tion characteristics; the chemists, who measure the
parts, are intercsted in understanding the measure-
ment system.

This is a common problem in which a manufac-
turer must verify that parts meet a specification. A
standard approach to the problem is to mcasure a
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sample of parts and compare them to a specification
and to then make an infcrence about the entire
population of parts. An interesting statistical issuc
ariscs because the measurements made on the parts
arc made with crror. Thercfore, to characterize
production performance based on the sample of
parts, one must account for the measurement systein
being used. For example, using the raw measure-
ments from a highly variable measurement system
may lead one to think that the production variation
is larger than it actually is.

Mathematically,

()

Yij = Zi + €ijs
where z; is the true value for the 't part, yij is the 4t
measured value on the " part,
measurement crror for the j" measured value on

the 0

and ¢;; is the
part. The quantities of interest are the x; and
the ¢, but what arc obscrved are the ;. If the
distributions of z; and e; can be estimated, then
there are a variety of issucs that can be addressed,
including many of the common ways of characteriz-
ing production performance.
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TABLE 1. Emissions Spectroscopy Measurements of Iron in
Parts Per Million (ppm) (A Part With Under 225 ppm of Iron
is Acceptable)

Part Mcasurement 1 Measurcment 2

1 206 258

2 181 197
3 185 162

4 195 195

5 170.5 143.8
6 193.8 224.8

7 244.8 217
8 191.5 196.8

9 209.3 189.5
10 134.5 143.8
L1 223.8 198.5
12 103 129.3
13 99.7 201.8
14 137.5 119.8
15 144.5 130
16 159 166.5
17 140.5 138
18 207 230
19 195.5 190.5
20 142.3 163.8
21 74.3 86.5
22 139.5 211.5
23 130.3 114
24 99.7 201.8

For example, consider a part that has an upper
specification U. One measure of production perfor-
mance is the proportion of parts meeting the
specification. An alternative measure of production
performance is the whole production distribution
(i.c., the distribution of ), which is sometimes
sunnnarized by particular quantiles. A related issue
is the setting of release or Lest specifications. Supposc
that the part has an upper specification U. In
deciding to accept a part or not, onc needs to
account for the measurcment error. A fypical
approach is to tighten the specification, U, to a
release specification, U,.. The sclection of U, depends
on the tradeoff that needs to be made between the
two types of errors: a good part can be rejected or a
bad part can be accepted. The probabilities of these
events are known as producer’s and consumer’s risks,
respectively,

Ple<Uly>U,) and Plz>U|y<U,).
The novel features of the examples addressed

below arise becanse the measurement systems cannot
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be characterized in the way that has traditionally
been used in the literature, i.c., as following a
N(0,0%) distribution. Instead, the measurement
systems have a different (c.g., multiplicative) struc-
ture for the variance, or they may not even be
normally distributed. These considerations have led
us to use a Baycsian approach to the estimation of
the production and measurement distributions. This
approach also naturally addresses questions of inter-
est, like what proportion of parts meet specification,
what arc the characteristics of the production
distribution, and how many times should cach part
be measured? The next two sections review previous
work on understanding mecasurement and production
systems and characterizing production characteris-
tics. A briel review of computational options for
Bayesian models follows. The final section contains
examples of the analysis of nonstandard mecasure-
ment systems, including an example that contains
censored data.

Analyses of Variance
Components Models

The statistical model given by Equation (1) is
known as the one-way variance components model.
This model has been considered in a variety of
contexts. Most authors assume that the production or
part measurcments z; have independent, N (u,oﬁ)
distributions and that the ¢;; have independent,
N(0,02)) distributions.

Hahn (1982) considered the case where the o? is
known and then estimated the proportion of parts
that meet specifications. Jacch (1984) also consid-
cred the case where offu is known and cstimated
tolerance intervals for the proportion of parts
meeting specifications. Mec (1984) was also inter-
ested in tolerance intervals, but considered the
cascs where o2 is known, the ratio of n‘fn/(f‘f) is
known, and the ratio of the variances is estimated
from repeated measurcments. Wang and Iyer
(1994) considered more complicated models for
the part distribution (e.g., random cffects, random
coefficients, and mixed effects) and calculated
tolerance intervals.

These authors approached the variance compo-
nents problem from a frequentist perspective.
Chaloner (1987) presented the basic Bayesian
approach to the unbalanced onc-way variance
components model, and Hahn and Raghunathan
(1988) provided analytical results for the estimation
of the production distribution. Gelfand et al. (1990),
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Hsu et al. (1996), and Wollinger (1998) revisited the
Bayesian approach after the development of Markov
chain Monte Carlo methods and showed how to
implement the basic model using Gibbs sampling,
Laplace approximations, and importance sampling.
Wolfinger (1998) considered the mixed cffects
model, for which the onc-way variance conmponents
model is a special case, and looked at the calculation
of tolerance intervals.

We consider the standard formulation of the one-
way variance components problem given by Equation
(1) and the assumptions that distribution of the z;
arc independent N (g, nﬁ) and the e;; arc independent,
N(0,6%). The maximum likelihood (frequentist)
cstimates for the variance components are given as
follows. We supposc that there are r parts,
i=1,...,r, and that there are n,; measurcments,
j=1,...,n;,on the ith part, son = >, n; is the total
number of measurements. Then

(?,,7*'“7,22 ij i. 27
V n; (Y, =Y ), and
P2l

i

MSTR =

r—

L, _ MSTR-52,
X

r n '

whore
1
Yo==2 0 Y
i

1
Y, :,,g Yi;, and
n;
j
N2
>on;
i

r—1 7

With one obscrvation on cach part, the variance
paramecters arc not identifiable, and thus additional
information is required to calculate frequentist
estimates. This additional information often comes
in onc of two forms: knowledge of o7,/ (fi or knowl-
edge of o2, (c.g., Mee 1984). When n; > 1 for at least

OUC 4, tlu paramecters arc identifliable.

Now, we consider the standard Bayesian approacl
to the problem. For data y and unknowns 0, Bayces
theorem states that

w0 [ y) oc iy | 0)7(6),

in which the prior information about @, as described
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by the prior density #(8), is updated by the
information in the data, as described by the like-
lihood or the joint density of the data ((y | 8), to yield
w(0|y), the joint posterior density of 6. Recent
advances in Bayesian computing allow one to casily
sample from the joint p()sl't‘ri()r density using Markov
chain Monte Carlo such as Gibbs sampling, which is
discussed in the section on Bayesian computation.

FFor this problem, 6 = (U‘fmaiﬂ/t, x) and the joind

posterior density takes the form

2

o (r ux|y) <y | ol (TI]/IX)(X‘(T[]/I)

x (o, (fl'); 1), (2)

where T((Im, 121, i, x | y) is the joint posterior density
of the unknown parameters given the observed data.
Wy |o?, p,u x) is the likelihood of the observed
data given the unknown paramecters, including the
unobserved part measurements, (x| (7}“:, ) s the
likelihood of the unobscrved part mecasurcients
given it«‘. distribution’s unknown paramecters, and
m(o? o, ) is the joint prior density of the measure-
ment system and production system parameters. Ifor
the standard variance components problemn,

Wy | o%, 00 11,%) = Uy | 07, %)
[[=— e - B
ij \/%O'm 2
(3)
and

Py
(x| o2 p) = exp| — G = 1)

1
- H V2ra, I 20}2}
('l)

What remains is the specification of the joiut prior
distribution, 71'(0'72",(7;2), i). There are a varicty of
common priors used for Baycesian variance compo-
nents analysis. For discussions, sce Box aund Tiao
(1973), Chaloner (1987), Danicls (1999), and Wol-
finger and Kass (2000).

With one obscrvation on cach part. and a proper
prior, the Bayesian approach is well-defined,
although the results depend strongly on the prior,
ceven as v — 2. As an illustration, we consider the
data in the first colunn of Table 1
density that we use has the form

w(p)n(oy | o), )m(or,),

The joint prior
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whore fications by balancing the consumer’s and produ-
7 cer’s risks in three different ways: by making the
() = 1 exp(—(u — 9)2/(272»’ risks 0q1‘121:1,'b).f .IIliIIiITIiZiIlg thp s o‘f the risks7~
TV 27 and by minimizing the cost of making the wrong

2 decision.
o o
(o) | oh,) = s, and

(03, +07) Mee et al. (1986) let U, cqual U and considercd

v a+]
2N p B0k, _1_ )
7{'(0’7”’) - F((Y) € (0_2 .

.

The priors on g and o?, arc normal and inversc
gamma (IG), respectively. The prior on 0;2, given o2,
is the uniform shrinkage prior that was proposed by
Danicls (1999). Using the uniform shrinkage prior
provides many nice properties; onc is that the joint
prior distribution is proper (and, thercfore, casily
implementable in readily available Bayesian soft-
warc) but diffuse. Another is that a uniform
distribution is assumed a prior: for the ratio of the
variance components o2, / (02, + 0’12)) If one has more

“ e . .« . 9 .
specific prior information about o7, an inverse
gamma. prior IG(n,v) can be used instead, as is

illustrated in later sections.

Here, N(200,50%) and IG(« = 5, 8 = 10000) priors
arc used for o and o2, respectively. Figure 1 displays
the priors for o2, {7}2), the total variance o2, + 072), and
the ratio of variances o7, / (07, + o). We note how the
uniform shrinkage prior on the ratio of variances
leads to a diffuse prior for crf) Figure 1 also displays
the posteriors. We note that little change occurs in
the posterior of o) although some updating does
occur. However, more updating occurs for rr%,
or, 402, and o2, /(02 + o’), as demonstrated by the
posteriors which arc more pcaked than their corre-
sponding priors.

Evaluating Process
Quality Characteristics

‘The production  distribution paramecters (u, 012,)
from the one-way variance components model can
be used to describe the production quality. For
example, 95% of the production falls below the 0.95
quantile, ¢+ 1.6450,. A statistical upper bound for
this quantity is known as a tolerance bound.

Another common problem is setting releasc
specifications. BEagle (1954) had an carly discus-
sion of methods for setting release specifications.
He considered consumer’s risk and producer’s risk
for known parameters, calculated point cstimates,
and plotted these under various scenarios. Grubbs
and Coon (1954) considered setting releasc speci-
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inference, based on data, of the risks. They consid-
cred both the case when (ff} /o2 is known and the case
when it is unknown and nceds to be estimated from
replicated measurements. Weber (1985) accounted
for a biased mecasurement system, i.c., N (b,,,,,,(r?”),
with bias b,,.

Easterling et al. (1991) considered five different
consumnier’s risks and how release specifications can be
based on these risks. They also considered sctting
release specifications when costs of rejecting a good
part and accepting a bad part, C, and C,, respec-
tively, arc given, and they looked at the sensitivity to
a misspecified 012) / 0_72” and C,/C.. Calculation of
tolerance bounds and releasc specifications are
illustrated by example in a later section.

Bayesian Computation

The joint posterior distribution for o7,, o7, s, and
x, Bquation (2), given the prior distributions
specificd following Equation (5), docs not have a
familiar distributional form, so it is not immediately
obvious how to do inference and estimation. Recent
advances in Bayesian computing allow one to obtain
a random sample from the joint posterior distribu-
tion. Once one has a random sample, then inference
can be made on any of the quality characteristics of
interest. Gibbs sampling is one method to draw
random samples from the joint posterior distribution
(Casclla and George (1992)). Gibbs sampling consists
of repeated cycles of draws from the full conditional
distributions, where the full conditional distributions
for Equation (2) arc: z; given (2,1 # 1, o2, 0]2), w“;

5z, given (1 #7r, o ol p); o5, given (a2,
Tii=1,...,7); (712, given (p, 02, x;,i =1,...,7); and
1 given (0;2), x4 =1,...,7). “Given’’ means that the
remaining parameters are set at their current values.
The density of the full conditional distribution is
identificd up to a constant by collecting all the terms
in the joint posterior density in Equation (2); for this
standard one-way variance components problem,
with the specification of the prior distribution given
in Equation (5), the full conditional distributions arc
given in Appendix A. In simple cases, the full
conditional distributions turn out be wecll-known
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FIGURE 1. Bayesian Update with One Measurement per
Variance 02, + 02, and Ratio of Variances o7, /(o) + 03)).

m i

distributions from which it is easy to sample. For
example, for the standard onc-way variance compo-
nents problem, draws from normal distributions are
needed for the true part values x and p. In more
complicated situations, such as for o*,‘fn and Ui, the full
conditional distribution can still be sampled using the
Metropolis-Hastings algorithm (Chib and Greenberg
(1995)).

Vol. 36, No. 2, April 2004
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Part (Measurement Variance o, Production Variance a2, Total

Fortunately, the practitioner often docs not have
to worry about all these details because the Bayesian
software package WinBUGS is frecly available at
http://www.mre-bsu.cam.ac.uk/bugs/ and can ca-
sily implement Markov chain Monte Carlo, as is
shown later in the examples (Gilks et al. (1994)).
WinBUGS has the advantage of not requiring the
specification of the full conditional distributions; it

WWWw.asq.org

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198 ALYSON WILSON, MICHAEL HAMADA AND MENG XU

requires only the specification of the model form

(Equations (3)-(5)).

Oue issue with Gibbs sampling is whether the
draws arc approximately a random sample from
the posterior distribution, which is referred to as
the convergence of the Gibbs sampler. To mitigate
the impact of initial values chosen for the
paramecters, a bwun-in is typically performed in
which the Gibbs sampler is run a number of times,
and the draws thus obtained are discarded. To
reduce dependence between draws, the draws can
be thinned by retaining cevery kth draw. WinBUGS
provides an autocorrclation function which calcu-
lates the lag ¢ correlation between draws i
iterations apart; thus, lag 1 autocorrelations (i.c.,
between conseeutive draws after thinning) which
arc small, say less than 0.1, are desirable. Sce
Raferty and Lewis (1996) for more discussion of
diagnostics for convergence.

Gibbs sampling has advantages when calculating
quality characteristics. After running a Gibbs sam-
pler, one has approximately a random sample from
the posterior distribution of the unknown para-
meters. This sample can be used in a straightforward
way 1o calculate a distribution for a particular
characteristic. For example, suppose that onc is
mterested in calculating a tolerance bound for the
0.95 quantile of the parts distribution. We use the
Gibbs-sampled values for p and ¢, and calculate a
sample of 1+ 1.6450, values. This provides an
cmpirical posterior distribution for the 0.95 quantile.
‘The appropriate tolerance hound can be read from
the resulting posterior distribution. For example, the
0.90 quantile of the empirical posterior distribution is
the 0,95 upper tolerance bound with confidence 0.90
(Aitchison (1964)).

Examples

The Bayesian approach has several advantages for
providing an integrated approach for the following
types of problems.

e It can handle more complicated measurcment

crror structures.

o It can handle nonnormal measurement error

distributions.

e It can handle censored data.

e It can incorporate sample data from other

experiments that provide information about
the measurement crror distribution.
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Each of these will be addressed in the following
examples, as will the calculation of quality character-
istics.

Nonstandard Measurement Error
Distributions

We recall that the data in Table 1 come from a new
manufacturing process. Each row represents two
measurements of the iron concentration, determined

by cmission spectroscopy, of the same part. A part is
considered to be acceptable if it has under 225 ppm of
iron.

Therce are theoretical reasons to believe that the
data in Table 1 do not arise from the standard one-
way variance conmponents model, instead having an
crror variance proportional to the true part value.
For this analysis, we model the measurements as

Ny, (pz,)?), (6)

with p unknown. The paramcter p is called a relative
standard deviation or RSD because it is equal to the
standard deviation px; divided by the mean z;. The
likelihood corresponding to Equation (6) replaces
that of Equation (3) in calculating the posterior
distribution.

In order to calculate the posterior distributions for
the unknown parameters, one must specify a prior
distribution for p, O’;Z), and p. For the following
examples, these are assumed to be independent, so
that

(1, 03, p) = w(p)m(oy)w(p),

where
— l ~ () 2 2 2
) = —=exp(=(— 0/ (27)),
m(p) = F?(y) e Ppl and
" B i1
o Ve
e e

The full conditional distributions for x, u, (f;%, and
p, useful for creating custom Gibbs sampling code,
are given in Appendix A. The draws for x, p, (Tf), and
p can all be made using the Metropolis-Hastings
algorithm. The WinBUGS code for this case is given
in Appendix B. One point of clarification is needed
for the second paramcter of the normal distribution;

Vol. 36, No. 2, April 2004
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FIGURE 2. Comparison of Posterior Distributions for Normal Multiplicative Measurement Error, Log-Normal Measurement
Error, and Censored Data Multiplicative Measurement Error (RSD p, Production Mean s, Production Variance (Ti, and Predictive

Part Distribution ).

WinBUGS uses the precision as the second parameter
of a normal distribution, which is the reciprocal of the

variance.
The joint prior distribution used is p~
N(200,50%), oy ~ IG(1,2000), and p~ IG(1,10).

The Gibbs sampler was burned-in 4000 iterations,
then run 500,000 more iterations, retaining every 50

draw, yiclding 10,000 draws. The lag 1 autocorrcla-

Vol. 36, No. 2, April 2004

tions arc less than 0.01. Figurc 2 contains a plot of the
prior and resulting posterior distributions for i, (r}'),,
and p. The dotted lines in Figure 2 are plots of the
prior distributions for p, O'IQN and p; the solid lines arce
plots of the posterior distributions. Also included is a
plot of the predictive distribution for the true value of
the next part. In addition, there arce plots for the
posterior distributions from models that will he

developed in subsequent sections.
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Log-Normal Measurement Error
Distribution

Equation (6) is one model that allows the
variance to depend on the mecan. Another possible
model is to assume that the measured data is log-
normal. A Jog-normal distribution has a density
function

o 1) = exp (— g (log () — 7)°)
Yij NN RS )
JYij 1Y 5w Vi

a mean of /2 and a variance of 20 _ 2+’
If we assume that the expected value of y;; is z;, then
the variance is given by 22(e*’ —1). If we let
p = ((:“’2 — 1)1/27 then the variance is given as
(pz;)?, and we have = log<x7;/\/(p2 + 1)) and

w? = log(p* + 1).

We take the prior distributions to be the same as
those of the normal model. The full conditional
distributions are given in Appendix A. The Win-
BUGS code for this casc is given in Appendix B. The
Gibbs sampler was burned-in 4000 iterations, then
run 500,000 more iterations, retaining every 50 draw,
yielding 10,000 draws. The lag 1 autocorrelations are
less than 0.01. Figure 2 shows the prior and resulting
posterior distributions for p, (7}2), and p.

Censored Data

We suppose that the measurement system that
collected the data in Table 1 produces left-censored
data; that is, the measurcment system’s detection
limit is 150 ppm and any measurement in Table 1
smaller than 150 ppm is reported as “< 150 ppm.”
The Bayesian analysis incorporates this data by
treating the censored y;; as unknown paramcters.
Using the normal measurement error model, where
the measured data is modeled as N(z;, (px;)?), with p
unknown, one has the following full conditional
distribution for the censored y;;:

Jij | pyx) = N, (/)-’Eyz)Q)Iy/j<1so~

This distribution is known as a truncated normal
distribution. The full conditional distributions are the
same as for the relative standard deviation model,
with the addition of the distribution for the censored
Y.

The WinBUGS code for this casc is given in
Appendix B. The Gibbs sampler was burncd-in
with 4000 iterations, then run 2,000,000 more

Journal of Quality Technology

iterations, retaining cvery 200 draw, yiclding
10,000 draws. The lag 1 autocorrelations arc less
than 0.1. Figure 2 shows the prior and resulting
posterior distributions for u, 0’[2), and p resulting
from the censored data.

Combining Different Data Sources

To illustrate how different data sources can be
combined, we suppose that the first 12 parts in
Table 1 have only the first measurcment. Pre-
viously, wec discussed that these data do not
provide any additional information about the
measurement system. Further, we let both meca-
surcments for the second 12 parts in Table 1 be
used to provide that additional information about
the measurement system and assume these parts
possibly came from a different production system.
If similar prior distributions arc assumed as before,
then the WinBUGS code for this case is given in
Appendix B. In the intercst of brevity, we do not
discuss this casc further.

Calculating Quality Characteristics

In the previous subscctions, we have calculated
posterior distributions for the unknown parameters
Iy cr]%, and p, as well as for the unobscrved z; and, in
the case of the censored data, y;;. Figure 2 overlays
plots of the posterior distributions for s, a;f, and p
from each of the models. In addition, it shows the
predictive distribution for the actual part measure-
ment (z) for the next part produced. The predictive
distribution is obtained by repeatedly drawing from

0.020 - [*]
—  Normal
haaad Log-Normal
— — - Censored

0.015 -

0.010 -

0.005 -

00 { —= —

200 250 300

FIGURE 3. Comparison of Posterior Distributions for 0.95
Quantile of the Part Distribution.
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FIGURE 4. Sum of Consumer's and Producer's Risks vs Release Specification U, (Normal and Log-Normal Measurement Error

Distributions).

the joint posterior p and 0}2), and then drawing a part
using N(y, (7[2)) We note that the distributions for the
normal and log-normal modecls are similar, and that
the distributions for the censored data are somewhat
wider, reflecting the additional uncertainty intro-
duced when exact measurements are not made.

Vol. 36, No. 2, April 2004

Since we have posterior distributions for all of the
unknown parameters, we can calculate many inter-
esting quality characteristics. Iigure 3 shows the
distribution of the 0.95 quantile of the production
distribution. The 0.95 quantile of this distribution is
an upper tolerance bound; there is a 95% probability
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that 95% of the part distribution lics below this
point. The 95% upper tolerance bound to contain
95% of the population is 286.7 for the normal model,
277.6 for the log-normal model, and 305.3 for the
censored-normal model.

If we are interested in calculating a release
specification for these parts, we proceed as follows.
Figure 4 shows the sum of consumer’s and
producer’s rigsk for both the normal and log-normal
models for various release specifications. When
cach part is measured once, the sum for the normal
(log-normal) model decreases and levels out at 0.15
(0.13) and consists entirely of consumer’s risk after
the curves flatten. If the consumer and producer
sharc the risk equally, then the release specification
is 264 (269), with a sum of 0.11 (0.11). When each
part is measured 10 times and the average value is
used to compare against the rclease specification,
the minimum sum of the risks is 0.05 (0.05) at
release specification 229 (233), with consumer’s risk
0.028 (0.038) and producer’s risk 0.019 (0.015). If
the consumer’s risk is controlled at 0.01 and three
measurcments per part are madce then the produ-
cer’s risk for the normal (log-normal) model is 0.15
(0.20) at specification limit 204 (197). The mini-
mum sum of risks for threc measurements is 0.08
(0.08). The specification limit of 204 (197) was
sclected arbitrarily as an example.

In summary, the quality characteristics of the
production distribution estimated from the normal
and log-normal models arc similar. However, the
risks for a given release limit can differ more for the
two models, especially when the number of
measurcments is small. For details on how the
models might be more formally compared, see
Carlin and Louis (2000).

Summary and Conclusions

The standard one-way variance components
model has been widely studied. We have shown
how to extend the model to the case where the
measurcment error model does not have the
standard N(O,(f%]) form. The Bayesian approach
has several advantages for this problem, providing
the flexibility to fit nonstandard measurcment
system models and generate analyses quickly. The
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Bayesian approach can also incorporate censored
data casily. A nonnormal part distribution can also
be easily accommodated. Finally, more complicated
part distributions can casily be handled; we
consider one described by a one-way random effects
model that captures both within-part variability
and between-part variability which, when com-
bined with the measurement error, yiclds a two-
way random cffeccts model. As in the fourth
cxample, only one measurement per location on a
part is required if there is another data source that
provides information about the parameters of the
measurement crror distribution. Morcover, differ-
ent parts may have different numbers of locations
sampled.

Appendix A: Full
Conditional Distributions

One-Way Variance Components Model,
Uniform Shrinkage Prior

9, 2 2 9
U])Uz. + T Um.(f])
2

m

2 2
flei oo, 00,m) =N . f
mY In“iﬂfj + o 77117:072] _J[_ 0_72”‘

. 1
Han | o, x) o e e
)2 0'.,2,1)”‘/24“1(0’7,2,,,“"(7]2;)2
1
X exXp 5
m
2
x| g+
B+ 5
1

FO2 0% %) o
(@) (02, + 02)

Y4
>o(; — )’
X € _ 2
exp 27

2 o 2
T Z(LL“F(TPQ 0_2 D)
l

2
o =N - -
f(lu I »? ) T'TZ + (7./'2) 77'7'2 + 0-2

Vol. 36, No. 2, April 2004




ASSESSING PRODUCTION QUALITY WITH NONSTANDARD MEASUREMENT ERRORS 203

Relative Standard Deviation Model,
Independent Priors
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Appendix B: WinBUGS Code

Measurement Error, One Observation,
Uniform Shrinkage Prior

#y part data with measurement error

#x part data (without measurement error)
#n sample size

#col 1 data of table 1

MODEL {

for(iin 1:n){

yv[i]l~dnorm{x (1], taum) #precision not variance
}

for(iin 1:n){

x[1] ~dnorm (mup, taup) #precision not variance

}

#prior

mup~dnorm{a,b) #theta, taun2 in paper, convert
#tauA2 to precisionb

taum~dgamma {c,d} #alpha, beta in paper

r~dunif (0, 1)

taup<- 1/ ((x/(1-r))*(1/taum))

#look at

sigma2n< - /taum

sigmalp<-/taup
tot<-sigmalm+sigmalp
rat<-sigma2m/ (sigmaZm+sigmaz2p)

}

data

list (n=24, a=200, b=0.0004, c=5, d=10000,
y=c{206, 181, 185, 195, 170.5, 193.8, 244.8,
191.5, 209.3, 134.5, 223.8, 103, 99.7, 137.5,
144.5, 159, 140.5, 207, 195.5, 142.3, 74.3, 439.5,
130.3, 99.7))

inits

list (mup=0, taum=1,r=5, x=c{206, 181, 185, 195,
170.5, 193.8, 244.8, 191.5, 209.3, 134.5, 223.8,
103, 99.7, 137.5, 144.5, 159, 140.5, 207, 195.5,
142.3, 74.3, 439.5, 130.3, 99.7))

Relative Standard Deviation Model

#y part data with measurement error

#x part data (without mearurement error)
#n sample size

#col 1 and 2 data of table 1

MODEL {
for (i in 1:n){

yl[il~dnorm(x[i], taum(i]) #precision not var
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#iance

y2 [i]~dnorm(x[i],taum[i]) #precision not var
#iance

taum[i1]<-1/pow(x[i] *rho,2)

}

#iprior

mup~dnorm(a,b) #theta taur2 in paper,
#convert tauA2 to precisionb

rho~dgamma (¢, d) #alpha, beta in paper

taup~dgamma (e, f) #eta, nu in paper

#look at
sigma<-1/taup
g95<-mup+l.645*sqgrt (sigmaz2p)

}

data

list(n=24, a=200, b=0.0004, c¢=1, d=10, e=1,
£=2000, yl=c(206, 181, 185, 195, 170.5, 193.8,
244.8, 191.5, 209.3, 134.5, 223.8, 103, 99.7,
137.5, 144.5, 159, 140.5, 207, 195.5, 142.3, 74.3,
439.5, 130.3, 99.7), y2=c(258, 197, 162, 195,
143.8, 224.8, 217, 196.8, 138, 230, 190.5, 163.8,
86.5, 211.5, 114, 201.8))

inits

list (mup=200,rho=.5, taup=.0003, x=c (232, 189,
173.5, 195, 157.15, 209.3, 230.9, 194.15, 19.4,
139.15, 211.15, 116.15, 150.75 128.65, 137.25,
162.75, 139.25, 218.5, 193, 153.05, 80.4, 325.5,
122.15, 150.75))

Log-Normal Model

#y part data with measurement error

#x part data(without measurement error)
#n sample size

#col 1 and 2 data of table 1

MODEL {

for(iin 1:n){
yl~dlnorm(g{i], taum) #precision
v2~dlnorm{g[i], taum) #precision
glil<-log(x[i]/sart (pow(rho,2)+1)
}

taum<-1/log(pow{rho,2)+1)
for (i in 1:n){

x[i] ~dnorm(mup, taup) I (0,) #precision

}

#prior
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mup~dnorm(a,b) #theta, tauA2 in paper, convert
#taunr2 to precisionb
rho~dgamma (c,d) #ialpha, beta in paper

taup~dgamma (e, £f) #eta, nu in paper

#look at
sigmal2p<-1/taup
g95<-mup+1.645*sqgrt (sigma2p)

}

data

list (n=24, a=200, b=0.0004, c=1, d=10, e=1,
£=2000, yl=c(206, 181, 185, 195, 170.5, 193.8,
244 .8, 191.5, 209.3, 134.5, 223.8, 103, 99.7,
137.5, 144.5, 159, 140.5, 207, 195.5, 142.3, 74.3,
439.5, 130.3, 99.7), y2=c(258, 197, 162, 195,
143.8, 224.8, 217, 196.8, 138, 230, 190.5, 163.8,
86.5, 211.5, 114, 201.8))

inits

list (mup=200,rho=.5, taup=.0003, x=c(232, 189,
173.5, 195, 157.15, 209.3, 230.9, 194.15, 19.4,
139.15, 211.15, 116.15, 150.75 128.65, 137.25,
162.75, 139.25, 218.5, 193, 153.05, 80.4, 325.5,
122.15, 150.75))

Relative Standard Deviation Censored Model

#y part data with measurement error

#x part data (without mearurement error)

#n sample size

#col 1 and 2 data of table 1, data censored below 150

MODEL {

for(iin 1:n){

ylill~{(g[i]l,taum(i]) I(, cenl[i]) #precision not
#variance

y2[il~(g[i], taum[i]) I{(, cen2[i]) #precision not
#variance

taum{i]l <-pow(x[1] *rho, 2)

}

for(iin 1:n){

x [1] ~dnorm{mup, taup) #precision not variance

#prior

mup~dnorm(a,b) #theta, tau"2 in paper, convert
#tau’2 to precisionb

rho~dgamma (c,d) #alpha, beta in paper

taup~dgamma (e, f) #eta, nu in paper

#look at

sigma2p<-1/tauap

g95a<-muap+1.645*sqrt (sigmalap)

Vol. 36, No. 2, April 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ASSESSING PRODUCTION QUALITY WITH NONSTANDARD MEASUREMENT ERRORS 205

}

data

list (n=24, a=200, b=0.0004 , c=1 , 4&=10 , e=1,
£=2000, yl=c(206, 181, 185, 195, 170.5, 193.8,
244.8, 191.5, 209.3, NA, 223.8, NA, NA, NA, NA,
159, NA, 207, 195.5, NA, NA, 439.5, NA, NA),
y2=c (258, 197, 162, 195, NA, 224.8, 217, 196.8,
189.5, NA, 198.5, NA, 201.8, NA, NA, 166.5, NA, 230,
190.5, 163.8, NA, 211.5, NA, 201.8), cenl=c (10000,
10000, 10000, 10000, 10000, 10000, 10000, 10000,
10000, 150, 10000, 150, 150, 150, 150, 10000, 150,
10000, 10000, 150, 150, 10000, 150, 150),
cen2=c (10000, 10000, 10000, 10000, 150, 10000,
10000, 10000, 10000, 150, 10000, 150, 10000, 150,
150, 10000, 150, 10000, 10000, 10000, 150, 10000,
150, 10000))

inits

list (mup=200, taup=.0003, rho=.5 x=c(232, 189,
173.5, 195, 157.15, 209.3, 230.9, 194.15, 199.4,
139.15, 212.15, 116.15), xb=c(150.75, 128.65,
137.25, 162.75, 139.25, 218.5, 193, 153.05, 80.4,
325.5, 122.15, 150.75))

Combined Data Sources

#y part data with measurement error

#x part data (without measurement error)

#nl sample gize for part distribution

#n2 sample size for measurement system distribu-
#tion

#col 1 and 2 data of table 1

MODEL {

for (i in 1:nl){

val[i]l~dnorm(xa(i], tauam(i]) #precision not
#variance

tavam (1] <-/pow(xa[i] *rho,2)

}

for(i in 1:n2){

ybl[i]~dnorm(xb[i], taubm[i]) #precision
yb2 [i] ~dnorm(xb[i], taubm[i]) #precision
taubm[i] <-/pow(xb[i] *rho, 2)

}

for (i in l:nl1){
xa[1i] ~dnorm(muap, tavap) #precision

}

for(iin 1:n2){
xa [1] ~dnorm (mubp, taubp) #precision

}
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#prior

muap~dnorm{a,b) #theta, taur2 in paper, convert
#taun2 to precisionb

mubp~dnorm({a,b) #theta, taus2 in paper, convert
#taun2 to precisionb

rho~dgamma (¢, d) #alpha, beta in paper

tauap~dgamma (e, f) #eta, nu in paper

taubp~dgamma (e, f) #eta, nu in paper

#look at
sigmna2p<-1/tauap
g95a<-muaptl.645*sgrt (sigmal2ap)

}

data

list (n=12, n2=12, a=200, b=0.0004, ¢c=1, 4=10, e=1,
£=2000, yal=c{206, 181, 185, 195, 170.5, 193.8,
244 .8, 191.5, 209.3, 134.5, 223.8, 103, 99.7,
137.5, 144.5, 159, 140.5, 207, 195.5, 142.3, 74.3,
439.5, 130.3, 99.7), y2=c(258, 197, 162, 195,
143.8, 224.8, 217, 196.8, 138, 230, 190.5, 163.8,
86.5, 211.5, 114, 201.8))

inits

list (muap=200, taubp=.0003, mubp=200, rho=.5,
tauvap=.0003, xa=c(232, 189, 173.5, 195, 157.15,
209.3, 230.9, 194.15, 19.4, 139.15, 211.15,
116.15), xb=c(150.75 128.65, 137.25, 162.75,
139.25, 218.5, 193, 153.05, 80.4, 325.5, 122.15,
150.75))
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